Меню

Как измерить площадь озера по карте

Определение морфометрических характеристик озера

Практическая работа 1

ЗАДАНИЕ:

Определить морфометрические характеристики озера (схема озера и необходимые для расчетов данные выдаются преподавателем каждому студенту в индивидуальном порядке)

Порядок выполнения работы.Важной характеристикой озера является его геогра­фическое положение (широта, долгота) и высота над уровнем моря.

Эти данные уже позволяют составить общее представление об основных чертах режима озера. Географическое положение озера в определенной мере отражает общие климатические особенности района, а высотное положение определяет также местные влияния климатических и других факторов на процессы, происходящие в озере.

При изучении озер и озерных котловин важно установить не только условия их образования, но и определить ряд числовых ха­рактеристик, дающих количественные представления об основных элементах озера и озерной котловины. Эти характеристики но­сят название морфометрических.

Площадь озера ω, м 2 ,вычисляется двояко: либо вместе с площадью островов, либо отдельно площадь водной поверхности. Так как бе­рега озер не отвесны, площадь водной поверхности (зеркала озера) изменяется при изменении уровня озера.

Длина озера — L, м кратчайшее расстояние между двумя наиболее удаленными точками, расположенными на берегах озера, измеряе­мое по поверхности озера.

Таким образом, эта линия будет прямой лишь в случае сравнительно простых очертаний озера; для изви­листого озера эта линия, очевидно, может быть и не прямой, а со­стоять из отдельных отрезков прямых и кривых линий.

Ширина озера различают:

— наибольшую ширину — В, м, определяе­мую как наибольший поперечник (перпендикуляр) к линии длины озера,

— среднюю ширину – Вср, м, представляющую отношение площади ω озера к его длине L

Коэффициент извилистости т — степень развития береговой линии — отношение длины береговой линии s к длине окружности круга, имеющего площадь, равную площади озера,

Коэффициент извилистости береговой линии может также быть выражен отношением длины береговой линии Sк периметру ломаной линии S’, обводящей контур озера:

В этом случае получается более правильное представление об изрезанности береговой линии.

Широкое применение при оценке водных запасов озера имеет кривая изменения площади озера с глубиной, представляющая со­бой график связи площадей горизонтальных сечений озера и соот­ветствующих им глубин, и кривая изменения объема озера в зави­симости от его глубины.

На Рис. 1 представлены кривые изменения площади и объема Онежского озера с глубиной. Такие кривые дают воз­можность определить площадь зеркала озера и объема воды для любого уровня. Эти величины необходимо знать при всех расчетах.

Рис. 1. Кривые площадей и объемов озера

Объем воды в озере W, м 3 может быть определен по карте изобат, пользуясь «методом призм». Изобатные поверхности делят объем озера на ряд слоев, каждый из которых можно рассматривать приближенно как призму, основаниями которой будут площади, ограниченные смежными изобатами, а высота равна сечению между ними. Обозначив площади, ограниченные отдельными изобатами, через ω, ω1, ω2, ω3… ωn, а сечение их через h, объем воды в озере определим по формуле

W = + + +…+ + ∆W =

где W – объем, заключенный между площадью последней самой глубокой изобаты и точкой дна озера с максимальной глубиной, определяемый по формуле:

где hмакс – максимальная глубина озера в метрах; hn – глубина, соответствующая наибольшей изобате, ωn площадь последней (самой глубокой) изобаты.

Источник

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

Чтобы произвести измерение расстояний потопографической карте, пользуются численным, линейным или поперечным масштабом. Расстояния между точками на топографической карте обычно измеряются циркулем-измерителем или курвиметром.

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

Численный масштаб топографической карты.

Это масштаб карты выраженный дробью, числитель которой – единица, а знаменатель – число, показывающее степень уменьшения на карте линий местности. Чем меньше знаменатель масштаба, тем крупнее масштаб карты. Подпись численного масштаба на картах обычно сопровождается указанием величины масштаба – расстояния на местности (в метрах или километрах), соответствующего одному сантиметру карты.

Например 1:50 000 – в 1 сантиметре 500 метров. Величина масштаба в метрах соответствует знаменателю численного масштаба без двух последних нулей. При определении расстояния с помощью численного масштаба линия на карте измеряетсялинейкой, полученный результат в сантиметрах умножается на величину масштаба.

Линейный масштаб топографической карты.

Линейный масштаб – графическое выражение численного масштаба. Он представляет собой прямую линию, разделенную на определенные части, которые сопровождаются подписями, означающими расстояния на местности.

Поперечный масштаб топографической карты.

Поперечный масштаб – график (обычно на металлической пластинке) для измерения и откладываниярасстояний на карте с предельной графической точностью (0,1 мм). Стандартный (нормальный) поперечный масштаб имеет большие деления, равные 2 см, и малые деления (слева на графике), равные 2 мм. Кроме того, на графике имеются отрезки между вертикальной и наклонной линиями, равные по первой горизонтальной линии 0,2 мм, по второй – 0,4 мм, по третьей – 0,6 мм и т. д.

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

С помощью стандартного поперечного масштаба можно измерять и откладывать расстояния на карте любого (метрического) масштаба. Отсчет расстояния по поперечномумасштабу состоит из суммы отсчета на основании графика и отсчета отрезка между вертикальной и наклонной линиями. На рисунке выше, расстояние между точками А и В (при масштабе карты 1:100 000) равно 5500 метров (4 км + 1400 м + 100 м).

Измерение расстояний на карте циркулем–измерителем.

При измерении расстояния по прямой линии иглы циркуля устанавливают на конечные точки, затем, не изменяя раствора циркуля, по линейному или поперечному масштабу отсчитывают расстояние. В том случае, когда раствор циркуля превышает длину линейного или поперечного масштаба, целое число километров определяется по квадратамкоординатной сетки, а остаток – обычным порядком по масштабу.

Измерение расстояний на карте способом наращивания раствора циркуля.

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

Измерение расстояний на карте шагом циркуля.

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

Ломаные линии удобно измерять путем последовательного наращивания раствора циркуля прямолинейными отрезками. Измерение расстояний и длин кривых линий производится последовательным отложением шага циркуля. Величина шага циркуля зависит от степени извилистости линии, но, как правило, не должна превышать 1 см. Для исключения систематической ошибки длину шага циркуля, определенную по масштабу или линейке, следует проверять измерением линии километровой сетки длиной 6–8 см.

Длина извилистой линии, измеренной по карте, всегда несколько меньше ее действительной длины, так как измеряются не кривая линия, а хорды отдельных участков этой кривой. Поэтому в результаты измерений покарте приходится вводить поправку – коэффициенты увеличения расстояний.

Измерение расстояний на карте курвиметром.

Вращением колесика стрелкукурвиметра устанавливают на нулевое деление, а затем прокатывают колесико по измеряемой линии с равномерным нажимом слева направо или снизу вверх. Полученный отсчет в сантиметрах умножают на величину масштаба данной карты.

Определение расстояний по прямоугольным координатам точек.

Определение расстояний попрямоугольным координатам точек в пределах одной зоны карты можно произвести по формуле

Читайте также:  Вся информация про озеро виктория

Измерение расстояний и определение площадей по топографической карте, численный, линейный и поперечный масштаб.

где D – длина линии, x1, y1 – координаты начальной точки прямой, x2, y2 – координаты конечной точки прямой.

Определение площадей по квадратам километровой сетки карты.

Площадь участка определяется подсчетом целых квадратов и их долей, оцениваемых на глаз. Каждому квадрату километровой сетки соответствует: на картах масштаба 1:25 000 и 1:50 000 – 1 км2, на картах масштаба 1:100 000 – 4 км2, на картах масштаба 1:200 000 – 16 км2.

По материалам книги Способы автономного выживания человека в природе.
Под редакцией Л. А. Михайлова.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Источник

Определение расстояний по карте различными способами

↑ Масштабы карт и пользование ими

При создании топографических карт, спроецированные на уровенную поверхность линейные размеры всех объектов местности уменьшают в определенное количество раз. Степень такого уменьшения называется масштабом карты. Масштаб карты может быть выражен в численной форме (численный масштаб) или в графической (линейный, поперечный масштабы), в виде графика.

Расстояния по карте измеряют, пользуясь обычно численным или линейным масштабом. Более точные измерения выполняются с помощью поперечного масштаба.

На шкале линейного масштаба оцифрованы отрезки, соответствующие расстояниям на местности в метрах или километрах. Это облегчает процесс измерения расстояний, так как не требуется производить вычисления.

Определение по карте расстояний и площадей.Измерение расстояний.

При пользовании численным масштабом расстояние, измеренное на карте в сантиметрах, умножают на знаменатель численного масштаба в метрах.

Например, расстояние от пункта ГГС отм. 174,3 (кв. 3909 ) до развилки дорог (кв. 4314) на карте составляет 13,96 см, на местности оно будет: 13,96 х 500 = 6980 м. (карта масштаба 1: 50 000 У-34-85-А).

Если расстояние, измеренное на местности надо отложить на карте, то его надо разделить на знаменатель численного масштаба. Например, расстояние, измеренное на местности, равно 1550 м., на карте масштаба 1: 50 000 оно будет 3,1 см.

Измерения по линейному масштабу выполняют с помощью циркуля-измерителя. Раствором циркуля соединяют две контурные точки на карте, между которым надо определить расстояние, затем прикладывают к линейному масштабу и получают расстояние на местности. Криволинейные участки определяют по частям или при помощи курвиметра.

↑ Определение площадей.

Площадь участка местности определяют по карте чаще всего подсчетом квадратов координатной сетки, покрывающих этот участок. Величину долей квадратов определяют на глаз или с помощью специальной палетки. Каждый квадрат, образуемый линиями координатной сетки, соответствует : 1: 25 000 и 1: 50 000 – 1 км.кв., 1: 100 000 – 4 км.кв., 1: 200 000 – 16 км.кв.

Полезно помнить, следующие соотношение 2 х 2 мм., соответсвуют для масштабов:

1: 25 000 – 0,25 га = 0,0025 км.кв.

1: 50 000 – 1 га = 0, 01 км.кв.

1: 100 000 – 4 га = 0, 04 км.кв.

1: 200 000 – 16 га = 0, 16 км.кв.

Определение площадей отдельных участков проводится при отчуждении земельных участков для Министерства обороны.

Точность определения расстояний по карте. Поправка в длину маршрута.

Точность измерения линий, площадей по топографической карте. Приобрести седельные тягачи и грузовики по самым лучшим ценам, вы сможете на сайте auto-holland.ru. Все грузовые автомобили прошли предпродажную подготовку и инспекционный контроль (инструментальный, компьютерный и визуальный).

Точность измерения линий и площадей, в первую очередь, зависит от масштаба карты. Чем крупнее масштаб карты, тем точнее определяются по ней длины линий и площади. При этом точность зависит не только от точности измерений, но и от погрешности самой карты, неизбежно при ее составлении и печати. Ошибки могут достигать для равнинных районов 0, 5, а в горах до 0, 7 мм. Источником ошибок измерений также является деформация карты и сами измерения.

Абсолютно с такой же погрешностью определяются плоские прямоугольные координаты по топографическим картам вышеперечисленных масштабов.

↑ Поправка в расстояние за наклон линии.

Например, расстояние между двумя пунктами, измеренное по карте, на местности с углом наклона 12 градусов равно 9270 м. Действительное же расстояние между этими пунктами будет 9270 х 1.02 = 9455 м. Таким образом, при измерении расстояний по карте, необходимо вводить поправки за наклон линий (рельеф).

Прямолинейные расстояния большой протяженности в одной шестиградусной зоне могут быть рассчитаны по формуле:

Этот способ определения расстояния используется в основном при подготовке стрельбы артиллерии и при пуске ракет по наземным целям.

Источник

База знаний

§5. МАСШТАБ. ИЗМЕРЕНИЕ РАССТОЯНИЙ И ПЛОЩАДЕЙ ПО КАРТАМ

Масштаб карт. Масштабом топографических карт называется отношение длины линии на карте к длине горизонтальной проекции соответствующей линии местности. На равнинных территориях, при небольших углах наклона физической поверхности, горизонтальные проекции линий весьма мало отличаются от длин самих линий, и в этих случаях можно считать масштабом отношение длины линии на карте к длине соответствующей линии местности, т.е. степень уменьшения длин линий на карте относительно их длины на местности. Масштаб указывается под южной рамкой листа карты в виде отношения чисел (численный масштаб), а также в виде именованного и линейного (графического) масштабов.

Численный масштаб (М) выражается дробью, где в числителе единица, а в знаменателе число, показывающее степень уменьшения: М =1/m . Так, например, на карте в масштабе 1:100 000 длины уменьшены сравнительно с их горизонтальными проекциями (или с действительностью) в 100 000 раз. Очевидно, чем больше знаменатель масштаба, тем больше уменьшение длин, тем мельче изображение объектов на карте, т.е. тем мельче масштаб карты.

Именованный масштаб — пояснение, указывающее соотношение длин линий на карте и на местности. При М= 1:100 000 1 см на карте соответствует 1 км.

Линейный масштаб служит для определения по картам длин линий в натуре. Это прямая, разделенная на равные отрезки, соответствующие «круглым» десятичным числам расстояний местности (рис. 5).

Рис. 5. Обозначение масштаба на топографической карте: а — основание линейного масштаба: b — наименьшее деление линейного масштаба; точность масштаба 100 м. Величина масштаба — 1 км

Отрезки a, откладываемые вправо от нуля, называются основанием масштаба. Расстояние на местности, соответствующее основанию, называется величиной линейного масштаба. Для повышения точности определения расстояний крайний слева отрезок линейного масштаба делится на более мелкие части в, называемые наименьшими делениями линейного масштаба. Расстояние на местности, выражаемое одним таким делением, является точностью линейного масштаба. Как видно на рисунке 5, при численном масштабе карты 1:100 000 и основании линейного масштаба в 1 см величина масштаба будет 1 км, а точность масштаба (при наименьшем делении в 1 мм) — 100 м. Точность измерений по картам и точность графических построений на бумаге связаны как с техническими возможностями измерений, так и с разрешающей способностью человеческого зрения. Точность построений на бумаге (графическую точность) принято считать равной 0,2 мм. Разрешающая способность нормального зрения близка к 0,1 мм.

Читайте также:  Самое крупное озеро в африке это

Предельная точность масштаба карты — отрезок на местности, соответствующий 0,1 мм в масштабе данной карты. При масштабе карты 1:100 000 предельная точность составит 10 м, при масштабе 1:10 000 она будет равна 1 м. Очевидно, что возможности изображения на этих картах контуров в их действительных очертаниях будут весьма различны.

Масштабы топографических карт в значительной степени обусловливают отбор и детальность показа изображаемых на них объектов. С уменьшением масштаба, т.е. с увеличением его знаменателя, теряется детальность изображения объектов местности.

Для удовлетворения разнообразных потребностей отраслей народного хозяйства, науки и обороны страны необходимы карты разных масштабов. Для государственных топографических карт СССР разработан ряд стандартных масштабов, основанных на метрической десятичной системе мер (табл. 1).

Таблица 1. Масштабы топографических карт СССР
Численный масштаб Название карты 1 см на карте соответствует на местности расстоянию 1 см 2 на карте соответ-ствует на местности площади
1:5 000 Пятитысячная 50 м 0,25 га
1:10 000 Десятитысячная 100 м 1 га
1:25 000 Двадцатипятитысячная 250 м 6,25 га
1:50 000 Пятидесятитысячная 500 м 25 га
1:100 000 Стотысячная 1 км 1 км 2
1:200 000 Двухсоттысячная 2 км 4 км 2
1:500 000 Пятисоттысячная 5 км 25 км 2
1:1 000 000 Миллионная 10 км 100 км 2

В комплексе карт, названных в табл. 1, выделяют собственно топографические карты масштабов 1:5000—1:200 000 и обзорно-топографические карты масштабов 1:500 000 и 1:1 000 000. Последние уступают в точности и подробности изображения местности, но отдельные листы охватывают значительные территории, и эти карты используют для общего ознакомления с местностью, для ориентирования при движении с большой скоростью.

Измерение расстояний и площадей по картам. При измерении расстояний по картам следует помнить, что в результате получают длины горизонтальных проекций линий, а не длины линий на земной поверхности. Однако при малых углах наклона разница в длине наклонной линии и ее горизонтальной проекции очень мала и может не учитываться. Так, например, при угле наклона 2° горизонтальная проекция короче самой линии на 0,0006, а при 5° — на 0,0004 ее длины.

При измерении по картам расстояний в горных районах действительное расстояние на наклонной поверхности можно вычислить

по формуле S = d·cos α, где d — длина горизонтальной проекции линии S, α — угол наклона. Углы наклона можно измерить по топографической карте методом, указанным в §11. Поправки в длины наклонных линий приводятся также в таблицах.

Рис. 6. Положение циркуля-измерителя при измерении расстояний по карте с помощью линейного масштаба

Для определения длины отрезка прямой между двумя точками в раствор циркуля-измерителя берут с карты заданный отрезок, переносят на линейный масштаб карты (как указано на рисунке 6) и получают длину линии, выраженную в поземельных мерах (метрах или километрах). Аналогичным образом измеряют длины ломаных линий, беря в раствор циркуля каждый отрезок отдельно и затем суммируя их длины. Измерения расстояний по кривым линиям (по дорогам, границам, рекам и т. п.) более сложны и менее точны. Очень плавные кривые измеряют как ломаные, разбив предварительно на прямолинейные отрезки. Извилистые линии измеряют малым постоянным раствором циркуля, переставляя его («шагая») по всем изгибам линии. Очевидно, что мелкоизвилистые линии следует измерять при весьма малом растворе циркуля (2—4 мм). Зная, какой длине на местности соответствует раствор циркуля, и подсчитав число его установок по всей линии, определяют общую ее длину. При этих измерениях применяют микроизмеритель или пружинный циркуль, раствор которого регулируется винтом, пропущенным через ножки циркуля.

Для измерения кривых линий пользуются также прибором — курвиметром (рис. 7). Находящееся в нижней части прибора колесико катят по измеряемой кривой. Система передач сообщает движение колесика стрелке. По делениям шкалы на циферблате определяют, какое расстояние пройдено колесиком по карте. Полученное расстояние, выраженное в сантиметрах, переводят в натуральную величину. Длины кривых линий, измеренные по карте, меньше истинных величин, так как их изображение всегда несколько обобщено — мелкие извилины объединены или вовсе сглажены.

Рис. 7. Курвиметр

Следует иметь в виду, что любые измерения неизбежно сопровождаются погрешностями (ошибками). По их происхождению ошибки подразделяются на грубые промахи (возникают из-за невнимательности лица, производящего измерения), систематические ошибки (из-за погрешностей мерных приборов и др.), случайные ошибки, которые не могут быть полностью учтены (причины их не ясны). Очевидно, что истинное значение измеряемой величины из-за влияния ошибок измерений остается неизвестным. Поэтому определяют ее вероятнейшее значение. Таким значением является арифметическое среднее из всех отдельных измерений x — (a1+a2+ …+аn):n=∑a/n , где x — вероятнейшее значение измеренной величины, a1, a2 … an — результаты отдельных измерений; 2 — знак суммы, n — число измерений. Чем больше измерений, тем ближе вероятнейшее значение к истинной величине A. Если предположить, что значение A известно, то разность между этой величиной и измерением а даст истинную погрешность измерения Δ=A—a. Отношение погрешности измерения какой-либо величины A к ее значению называется относительной погрешностью —. Эта погрешность выражается в виде правильной дроби, где в знаменателе — доля ошибки от измеряемой величины, т.е. Δ/A = 1/(A:Δ).

Так, например, при измерении длин кривых курвиметром возникает ошибка измерений порядка 1—2%, т. е. она составит 1/100 — 1/50 часть длины измеряемой линии. Таким образом, при измерении линии длиной 10 см возможна относительная ошибка 1—2 мм. Эта величина в разных масштабах дает разные ошибки в длинах измеряемых линий. Так, на карте масштаба 1:10 000 2 мм соответствует 20 м, а на карте масштаба 1:1 000 000 это будет 200 м. Отсюда следует, что более точные результаты измерений получаются при использовании карт крупных масштабов.

Определение площадей участков по топографическим картам основано на геометрической зависимости между площадью фигуры и ее линейными элементами. Масштаб площадей равен квадрату линейного масштаба. Если стороны прямоугольника на карте уменьшены в n раз, то площадь этой фигуры уменьшится в п2 раз. Для карты масштаба 1:10 000 (1 см — 100 м) масштаб площадей будет равен (1:10 000)2 или 1 см 2 — (100 м) 2 , т.е. в 1 см 2 — 1 га, а на карте масштаба 1:1 000 000 в 1 см 2 — 100 км 2 .

Для измерения площадей по картам применяют графические и инструментальные способы. Применение того или иного способа измерений диктуется формой измеряемого участка, заданной точностью результатов измерений, требуемой быстротой получения данных и наличием необходимых приборов.

Рис. 8. Спрямление криволинейных границ участка и разбивка его площади на простые геометрические фигуры: точками обозначены отсекаемые участки, штриховкой — причленяемые участки

При измерении площади участка с прямолинейными границами делят участок на простые геометрические фигуры, измеряют площадь каждой из них геометрическим способом и, суммируя площади отдельных участков, вычисленных с учетом масштаба карты, получают общую площадь объекта. Объект с криволинейным контуром разбивают на геометрические фигуры, предварительно спрямив границы с таким расчетом, чтобы сумма отсеченных участков и сумма избытков взаимно компенсировали друг друга (рис. 8). Результаты измерений будут в некоторой степени приближенными.

Рис. 9. Квадратная сеточная палетка, наложенная на измеряемую фигуру. Площадь участка Р=a 2 n, a — сторона квадрата, выраженная в масштабе карты; n — число квадратов, попавших в пределы контура измеряемого участка

Измерение площадей участков, имеющих сложную неправильную конфигурацию, чаще производят с помощью палеток и планиметров, что дает наиболее точные результаты. Сеточная палетка (рис. 9) представляет собой прозрачную пластину (из пластика, органического стекла или кальки) с награвированной или начерченной сеткой квадратов. Палетку накладывают на измеряемый контур и по ней подсчитывают количество клеток и их частей, оказавшихся внутри контура. Доли неполных квадратиков оцениваются на глаз, поэтому для повышения точности измерений применяются палетки с мелкими квадратами (со стороной 2—5 мм). Перед работой на данной карте определяют площадь одной ячейки в поземельных мерах, т.е. цену деления палетки.

Рис. 10. Точечная палетка — видоизмененная квадратная палетка. Р=a 2 n

Помимо сеточных палеток, применяются точечные и параллельные палетки, представляющие собой прозрачные пластины с награвированными точками или линиями. Точки ставятся в одном из углов ячеек сеточной палетки с известной ценой деления, затем линии сетки удаляют (рис. 10). Вес-каждой точки равен цене деления палетки. Площадь измеряемого участка определяется путем подсчета количества точек, оказавшихся внутри контура, и умножением этого количества на вес точки.

Рис. 11. Палетка, состоящая из системы параллельных линий. Площадь фигуры равна сумме длин отрезков (средних пунктирных), отсекаемых контуром участка, умноженной на расстояние между линиями палетки. P = р∑l

На параллельной палетке награвированы равноотстоящие параллельные прямые. Измеряемый участок окажется разделенным на ряд трапеций с одинаковой высотой при наложении на него палетки (рис. 11). Отрезки параллельных линий внутри контура посредине между линиями являются средними линиями трапеций. Измерив все средние линии, умножают их сумму на длину промежутка между линиями и получают площадь всего участка (с учетом площадного масштаба).

Измерение площадей значительных участков производится по картам с помощью планиметра. Наиболее распространенным является полярный планиметр, работа с которым не представляет большой сложности. Однако теория этого прибора довольно сложна и рассматривается в руководствах по геодезии.

Рис. 12. Полярный планиметр

Прибор имеет два рычага и счетный механизм (рис. 12). Полюсный рычаг 1 соединен шарниром 2 с обводным рычагом 4, а его другой конец опирается на неподвижный полюс 3 — тяжелый цилиндр, снабженный иглой, которая при работе крепит бумагу к столу и обеспечивает неподвижность полюса. Обводный рычаг 4 на одном конце имеет шпиль 5 для обвода измеряемого контура фигуры, а близ другого его конца закреплен счетный механизм. Колесико 6 при движении шпиля катится или скользит по бумаге, его движения передаются червячной передачей 7 на циферблат 8.

Циферблат имеет 10 делений, каждое из которых соответствует одному обороту колесика; на барабане колесика имеется 100 делений для учета части окружности при неполном обороте колесика. По верньеру 9 можно учесть движение колесика с точностью до 1/10 доли наименьшего деления барабана, т.е. до — 1/1000 части его окружности1. Полный отсчет состоит из четырех цифр, которые получают в таком порядке: первую — по циферблату (число оборотов колесика), вторую и третью — по барабану колесика, четвертую — по верньеру. Пример записи отсчета — 3412.

Источник



Активный туризм на Юге России

1.9. ИЗМЕРЕНИЕ (ОПРЕДЕЛЕНИЕ) РАССТОЯНИИ И ПЛОЩАДЕЙ ПО КАРТЕ

При определении расстояний по карте пользуются численным или линейным (рис. 9) и поперечным масштабом.

в 1 сантиметре 500 метров

Рис. 9. Численный и линейный масштабы, помещаемые на карте

Численный масштаб — масштаб карты, выраженный дробью, числитель которой — единица, а знаменатель — число, показывающее степень уменьшения на карте линий местности (точнее — их горизонтальных проложений); чем меньше знаменатель масштаба, тем

крупнее масштаб карты. Подпись численного масштаба на картах обычно сопровождается указанием величины масштаба — расстояния на местности (в метрах или километрах), соответствующего одному сантиметру карты. Величина масштаба в метрах соответствует знаменателю численного масштаба без двух последних нулей,

При определении расстояния с помощью численного масштаба линия на карте измеряется линейкой и полученный результат в сантиметрах умножается на величину масштаба.

Линейный масштаб — графическое выражение численного масштаба; он представляет прямую линию, разделенную на определенные

Рис. 10. Измерение расстояний по линейному масштабу

части, которые сопровождаются подписями, означающими расстояния на местности. Линейный масштаб служит для измерения и откладывания расстояний на карте. На рис. 10 расстояние между точками А и В равно 1850 м.

Поперечный масштаб — график (обычно на металлической пластинке) для измерения и откладывания расстояний на карте с предельной графической точностью (0,1 мм).

Стандартный (нормальный) поперечный масштаб (рис. II ) имеет большие деления, равные 2 см, и малые деления (слева на графике), равные 2 мм’, кроме того, на графике имеются отрезки между вертикальной и наклонной линиями, равные по первой горизонтальной линии — 0,2 мм, по второй — 0,4 мм, по третьей — 0,6 мм и т. д. С помощью стандартного поперечного масштаба можно измерять и откладывать расстояния на карте любого (метрического) масштаба. Отсчет расстояния по поперечному масштабу состоит из суммы отсчета на основании графика и отсчета отрезка между вертикальной и наклонной линиями. На рис. 11 расстояние между точками А и В (при масштабе карты 1:100 000) равно 5500 м (4 км +1400 м+100 м).

Рис. II . Измерение расстояний по поперечному • масштабу

Измерение расстояний циркулем-измерителем. При измерении расстояния по прямой линии иглы циркуля устанавливают на конечные точки, затем, не изменяя раствора циркуля, по линейному или поперечному масштабу отсчитывают расстояние. В том случае, когда раствор циркуля превышает длину линейного или поперечного масштаба, целое число километров определяется по квадратам координатной сетки, а остаток — обычным порядком по масштабу.

Ломаные линии удобно измерять путем последовательного наращивания раствора циркуля прямолинейными отрезками, как показано на рис. 12.

Измерение’ длин кривых линий производится последовательным отложением «шага» циркуля (рис. 13). Величина «шага» циркуля зависит от степени извилистости линии, но, как правило, не должна превышать 1 см. Для исключения систематической ошибки длину «шага» циркуля, определенную по масштабу или линейке, следует проверять измерением линии километровой сетки длиной 6—8 см.

Длина извилистой линии, измеренной по карте, всегда несколько меньше ее действительной длины, так как измеряются не кривая линия, а хорды отдельных участков этой кривой; поэтому в результаты измерений по карте приходится вводить поправку — коэффициенты увеличения расстояний (см. табл. 29).

Рис. 12. Измерение расстояний способом наращивания раствора циркуля

Источник

Adblock
detector