Меню

Условия окружающей среды озер

Экосистема озера — Lake ecosystem

Поищите lentic в Викисловаре, бесплатном словаре.

Экосистема озера или озерные экосистемы включает в себя биотические (живые) растений , животных и микроорганизмов , а также абиотической (неживой) физических и химических взаимодействий. Озерные экосистемы являются ярким примером непроточных экосистем ( lentic относится к стационарным или относительно неподвижным пресноводным , от латинского lentus , что означает «вялый»), которые включают пруды , озера и водно-болотные угодья , и большая часть этой статьи относится к непроточным экосистемам в целом. . Бледные экосистемы можно сравнить с лоточными экосистемами , которые включают проточные наземные воды, такие как реки и ручьи . Вместе эти две области образуют более общую область изучения пресноводной или водной экологии .

Лентичные системы разнообразны: от небольшого временного бассейна с дождевой водой глубиной в несколько дюймов до озера Байкал , максимальная глубина которого составляет 1642 метра. Общее различие между бассейнами / прудами и озерами нечеткое, но Браун утверждает, что вся нижняя поверхность прудов и бассейнов подвергается воздействию света, а озера — нет. Кроме того, некоторые озера становятся сезонно стратифицированными (более подробно это обсуждается ниже). Пруды и бассейны имеют две области: пелагическую зону открытой воды и бентическую зону , которая включает нижнюю и береговую области. Поскольку у озер есть глубокие участки дна, не освещенные светом, в этих системах есть дополнительная зона — профундаль . Эти три области могут иметь очень разные абиотические условия и, следовательно, виды-хозяева, которые специально приспособлены к жизни там.

СОДЕРЖАНИЕ

  • 1 Важные абиотические факторы
    • 1.1 Свет
    • 1.2 Температура
    • 1.3 Ветер
    • 1.4 Химия
  • 2 Бородавчатая системная биота
    • 2.1 Бактерии
    • 2.2 Первичные производители
    • 2.3 Беспозвоночные
    • 2.4 Рыба и другие позвоночные
  • 3 Трофические отношения
    • 3.1 Первичные производители
    • 3.2 Бактерии
    • 3.3 Бентические беспозвоночные
    • 3.4 Рыба
    • 3.5 Лентиковые пищевые сети
  • 4 Модели сообщества и разнообразие
    • 4.1 Местное видовое богатство
    • 4.2 Модели сукцессии в планктонных сообществах — модель PEG
    • 4.3 Широтные диаграммы
  • 5 жизненных циклов естественных озер
    • 5.1 Создание озера
    • 5.2 Естественное вымирание
  • 6 Человеческие воздействия
    • 6.1 Подкисление
    • 6.2 Эвтрофикация
    • 6.3 Инвазивные виды
  • 7 См. Также
  • 8 ссылки
  • 9 Библиография

Важные абиотические факторы

Свет обеспечивает солнечную энергию, необходимую для запуска процесса фотосинтеза , основного источника энергии лентических систем. Количество получаемого света зависит от комбинации нескольких факторов. Небольшие водоемы могут затеняться окружающими деревьями, а облачный покров может влиять на доступность света во всех системах, независимо от размера. Сезонные и дневные факторы также влияют на доступность света, потому что чем меньше угол, под которым свет падает на воду, тем больше света теряется при отражении. Это известно как закон Бера . Как только свет проникает через поверхность, он также может рассеиваться частицами, взвешенными в толще воды. Это рассеяние уменьшает общее количество света по мере увеличения глубины. Озера делятся на световые и афотические регионы, причем первый солнечный свет получает, а последний находится ниже глубины проникновения света, что лишает его фотосинтетической способности. Что касается зонирования озер, считается, что пелагическая и бентическая зоны находятся в пределах фотической области, а профундальная зона — в афотической.

Температура

Температура является важным абиотическим фактором в непроточных экосистемах, потому что большая часть биоты пойкилотермична , когда внутренняя температура тела определяется окружающей системой. Вода может быть нагрета или охлаждена за счет излучения на поверхности и проводимости к или от воздуха и окружающей подложки. Мелкие водоемы часто имеют постоянный температурный градиент от более теплой воды на поверхности до более холодной воды на дне. Кроме того, колебания температуры в этих системах могут сильно различаться как в дневное, так и в сезонное время.

Температурные режимы больших озер очень разные (рис. 2). Например, в регионах с умеренным климатом при повышении температуры воздуха ледяной слой, образовавшийся на поверхности озера, распадается, оставляя воду с температурой около 4 ° C. Это температура, при которой вода имеет самую высокую плотность. В течение сезона более теплые температуры воздуха нагревают поверхностные воды, делая их менее плотными. Более глубокие воды остаются прохладными и плотными из-за меньшего проникновения света. С началом лета образуются два отдельных слоя с такой большой разницей температур между ними, что они остаются стратифицированными. Самая низкая зона в озере самая холодная и называется гиполимнионом . Верхняя теплая зона называется эпилимнионом . Между этими зонами находится полоса быстрого изменения температуры, называемая термоклином . В более холодное осеннее время тепло теряется на поверхности, и эпилимнион охлаждается. Когда температуры в двух зонах становятся достаточно близкими, воды снова начинают смешиваться, чтобы создать однородную температуру, и это событие называется круговоротом озера . Зимой происходит обратная стратификация, так как вода у поверхности остывает замерзает, а более теплая, но более плотная вода остается у дна. Устанавливается термоклин, цикл повторяется.

Ветер

В открытых системах ветер может создавать турбулентные спиралевидные поверхностные течения, называемые циркуляциями Ленгмюра (рис. 3). Как именно эти токи устанавливаются, до сих пор не совсем понятно, но очевидно, что это связано с некоторым взаимодействием между горизонтальными поверхностными токами и поверхностными гравитационными волнами. Видимый результат этих вращений, который можно увидеть в любом озере, — это линии пены на поверхности, идущие параллельно направлению ветра. Положительно плавучие частицы и мелкие организмы концентрируются в линии пены у поверхности, а отрицательно плавучие объекты обнаруживаются в восходящем течении между двумя вращениями. Объекты с нейтральной плавучестью обычно равномерно распределяются в толще воды. Эта турбулентность обеспечивает циркуляцию питательных веществ в толще воды, что делает ее критически важной для многих пелагических видов, однако ее влияние на бентические и глубинные организмы, соответственно, минимально или отсутствует. Степень циркуляции питательных веществ зависит от системы, так как она зависит от таких факторов, как сила и продолжительность ветра, а также глубина озера или бассейна и продуктивность.

Химия

Кислород необходим для дыхания организма . Количество кислорода в стоячей воде зависит от: 1) площади прозрачной воды, подверженной воздействию воздуха, 2) циркуляции воды в системе и 3) количества кислорода, производимого и используемого присутствующими организмами. В неглубоких, богатых растениями водоемах могут быть большие колебания кислорода, с чрезвычайно высокими концентрациями в течение дня из-за фотосинтеза и очень низкими значениями ночью, когда дыхание является доминирующим процессом первичных продуцентов. Термическое расслоение в более крупных системах также может влиять на количество кислорода, присутствующего в различных зонах. Эпилимнион богат кислородом, потому что он быстро циркулирует, получая кислород через контакт с воздухом. Однако гиполимнион циркулирует очень медленно и не контактирует с атмосферой. Кроме того, в гиполимнионе меньше зеленых растений, поэтому в результате фотосинтеза выделяется меньше кислорода. Весной и осенью, когда эпилимнион и гиполимнион смешиваются, кислород становится более равномерно распределенным в системе. Низкий уровень кислорода характерен для профундальной зоны из-за скопления разлагающейся растительности и животного материала, который «проливается дождем» из пелагической и бентосной зон, и неспособности поддержать первичных продуцентов.

Фосфор важен для всех организмов, потому что он является компонентом ДНК и РНК и участвует в метаболизме клеток как компонент АТФ и АДФ. Кроме того, фосфор не обнаружен в больших количествах в пресноводных системах, что ограничивает фотосинтез у первичных продуцентов, что делает его основным фактором, определяющим производство проточных систем. Цикл фосфора сложен, но модель, описанная ниже, описывает основные пути. Фосфор в основном попадает в пруд или озеро через сток с водораздела или атмосферные осадки. Попадая в систему, реактивная форма фосфора обычно поглощается водорослями и макрофитами, которые выделяют нереактивное соединение фосфора в качестве побочного продукта фотосинтеза. Этот фосфор может опускаться вниз и становиться частью донных или глубоких отложений, или он может реминерализоваться до реактивной формы микробами в толще воды. Точно так же инертный фосфор в осадке может быть реминерализован в реактивную форму. Однако отложения обычно богаче фосфором, чем вода в озере, что указывает на то, что это питательное вещество может долго оставаться там, прежде чем оно будет реминерализовано и повторно введено в систему.

Лентиочная системная биота

Бактерии

Бактерии присутствуют во всех районах непроточных вод. Свободноживущие формы связаны с разложением органического материала, биопленки на поверхности скал и растений, взвешенных в толще воды, а также в отложениях бентосной и профундальной зон. Другие формы также связаны с кишечником непереносимых животных как паразиты или в комменсальных отношениях. Бактерии играют важную роль в системном метаболизме за счет рециркуляции питательных веществ, что обсуждается в разделе «Трофические отношения».

Первичные производители

Водоросли, включая фитопланктон и перифитон , являются основными фотосинтезаторами в прудах и озерах. Фитопланктон дрейфует в водной толще пелагиали. Многие виды имеют более высокую плотность, чем вода, что должно привести к их непреднамеренному погружению в бентос. Чтобы бороться с этим, фитопланктон разработал механизмы изменения плотности, образуя вакуоли и газовые пузырьки или изменяя их форму, чтобы вызвать сопротивление, тем самым замедляя их опускание. Очень сложная адаптация, используемая небольшим количеством видов, — это хвостовидный жгутик, который может регулировать вертикальное положение и позволять перемещаться в любом направлении. Фитопланктон также может поддерживать свое присутствие в толще воды, циркулируя в ленгмюровских круговоротах . А перифитные водоросли прикреплены к субстрату. В озерах и прудах они могут покрывать все поверхности бентоса. Оба типа планктона важны как источники пищи и как поставщики кислорода.

Водные растения обитают как в придонной, так и в пелагической зонах, и их можно сгруппировать по способу роста: ⑴ эмерджентные = укореняются в субстрате, но листья и цветы уходят в воздух; ⑵ с плавающими листьями = укорененные в субстрате, но с плавающими листьями; ⑶ погруженный = растет под поверхностью; ⑷ свободно плавающие макрофиты = не укореняются в субстрате, а плавают на поверхности. Эти различные формы макрофитов обычно встречаются в разных частях бентосной зоны, с зарождающейся растительностью ближе всего к береговой линии, затем с плавающими листьями макрофитов, за которыми следует подводная растительность. Свободно плавающие макрофиты могут встречаться в любом месте на поверхности системы.

Водные растения обладают большей плавучестью, чем их наземные аналоги, потому что пресная вода имеет более высокую плотность, чем воздух. Это делает конструктивную жесткость не важной в озерах и прудах (за исключением надземных стеблей и листьев). Таким образом, листья и стебли большинства водных растений используют меньше энергии для создания и поддержания древесной ткани, вместо этого вкладывая эту энергию в быстрый рост. Чтобы противостоять стрессам, вызываемым ветром и волнами, растения должны быть гибкими и жесткими. Свет, глубина воды и типы субстрата являются наиболее важными факторами, контролирующими распространение подводных водных растений. Макрофиты являются источниками пищи, кислорода и структуры среды обитания в бентосной зоне, но не могут проникать в глубины эвфотической зоны и, следовательно, там не встречаются.

Беспозвоночные

Зоопланктон — это крошечные животные, взвешенные в толще воды. Подобно фитопланктону, эти виды разработали механизмы, которые не позволяют им погружаться в более глубокие воды, включая формы тела, вызывающие волочение, и активное движение придатков (таких как антенны или шипы). Пребывание в толще воды может иметь свои преимущества с точки зрения питания, но отсутствие рефугиумов в этой зоне делает зоопланктон уязвимым для хищников. В ответ некоторые виды, особенно Daphnia sp., Совершают ежедневные вертикальные миграции в толще воды, пассивно опускаясь на более темные более низкие глубины в течение дня и активно продвигаясь к поверхности ночью. Кроме того, поскольку условия в линзовой системе могут сильно меняться в зависимости от сезона, зоопланктон может переключаться с откладки обычных яиц на покоящиеся яйца, когда не хватает пищи, температура опускается ниже 2 ° C или если численность хищников высока. Эти покоящиеся яйца имеют диапаузу или период покоя, который должен позволить зоопланктону столкнуться с условиями, более благоприятными для выживания, когда они, наконец, вылупятся. Среди беспозвоночных, населяющих бентическую зону, численно преобладают мелкие виды, и они богаты видами по сравнению с зоопланктоном открытой воды. К ним относятся: ракообразные (например, крабы , раки и креветки ), моллюски (например, моллюски и улитки ) и многочисленные виды насекомых. Эти организмы в основном встречаются в зонах роста макрофитов, где находятся самые богатые ресурсы, вода с высоким содержанием кислорода и самая теплая часть экосистемы. Структурно разнообразные слои макрофитов являются важными участками накопления органического вещества и представляют собой идеальную область для колонизации. Отложения и растения также обеспечивают хорошую защиту от хищных рыб.

Очень немногие беспозвоночные способны населять холодную, темную и бедную кислородом профундальную зону . Те, что могут, часто имеют красный цвет из-за наличия большого количества гемоглобина , который значительно увеличивает количество кислорода, переносимого в клетки. Поскольку концентрация кислорода в этой зоне низкая, большинство видов строят туннели или норы, в которых они могут спрятаться, и используют минимальное количество движений, необходимых для циркуляции воды, притягивая к себе кислород, не затрачивая слишком много энергии.

Читайте также:  Экология россии озеро байкал

Рыба и другие позвоночные

У рыб есть ряд физиологических толерантностей, которые зависят от того, к какому виду они принадлежат. У них разные летальные температуры, потребности в растворенном кислороде и потребности в нересте, которые зависят от их уровня активности и поведения. Поскольку рыбы очень подвижны, они могут бороться с неподходящими абиотическими факторами в одной зоне, просто перемещаясь в другую. Питатель детрита в профундальной зоне, например, обнаружив, что концентрация кислорода упала слишком низко, может подавать ближе к бентосной зоне. Рыба также может менять свое место жительства на разных этапах своей жизненной истории: вылупляясь в осадочном гнезде, затем перемещаясь в заросшую водорослями бентическую зону, чтобы развиваться в защищенной среде с пищевыми ресурсами, и, наконец, во взрослом возрасте в пелагиали.

Другие таксоны позвоночных также населяют линзовые системы. К ним относятся земноводные (например, саламандры и лягушки ), рептилии (например, змеи , черепахи и аллигаторы ) и большое количество видов водоплавающих птиц. Большинство этих позвоночных проводят часть своего времени в наземных средах обитания и, таким образом, не подвергаются прямому воздействию абиотических факторов в озере или пруду. Многие виды рыб важны и как потребители, и как виды добычи для более крупных позвоночных, упомянутых выше.

Трофические отношения

Первичные производители

Бледные системы получают большую часть своей энергии от фотосинтеза, выполняемого водными растениями и водорослями. Этот автохтонный процесс включает комбинацию углекислого газа, воды и солнечной энергии для производства углеводов и растворенного кислорода. В озере или пруду потенциальная скорость фотосинтеза обычно уменьшается с глубиной из-за ослабления света. Фотосинтез, однако, часто бывает слабым на верхних нескольких миллиметрах поверхности, вероятно, из-за торможения ультрафиолетовым светом. Точные измерения глубины и скорости фотосинтеза на этой кривой зависят от системы и зависят от: 1) общей биомассы фотосинтезирующих клеток, 2) количества светопоглощающих материалов и 3) количества и частотного диапазона светопоглощающих пигментов (например, хлорофиллов ). внутри фотосинтезирующих клеток. Энергия, создаваемая этими первичными производителями, важна для сообщества, потому что через потребление она передается на более высокие трофические уровни .

Бактерии

Подавляющее большинство бактерий в озерах и прудах получают энергию за счет разложения растительности и животных. В пелагиали мертвая рыба и случайное аллохтонное поступление опада являются примерами крупных твердых частиц органического вещества (CPOM> 1 мм). Бактерии разлагают их на мелкодисперсные органические вещества (FPOM Бентические беспозвоночные

Бентические беспозвоночные из-за высокого уровня видового богатства имеют много способов поимки добычи. Питатели-фильтры создают токи через сифоны или биение ресничек, чтобы тянуть воду и ее питательные вещества к себе, чтобы напрячься. Травоядные животные используют приспособления для соскабливания, измельчения и измельчения, чтобы питаться перифитными водорослями и макрофитами. Члены гильдии коллекционеров просматривают отложения, выбирая конкретные частицы с хищными отростками. Депозитные питающиеся беспозвоночные без разбора потребляют отложения, переваривая любые содержащиеся в них органические вещества. Наконец, некоторые беспозвоночные принадлежат к гильдии хищников , которые захватывают и поедают живых животных. Глубокая зона является домом для уникальной группы фильтрующих питателей, которые используют небольшие движения тела, чтобы провести ток через норы, созданные ими в отложениях. Этот режим питания требует наименьшего количества движений, что позволяет этим видам экономить энергию. Небольшое количество таксонов беспозвоночных являются хищниками в профундальной зоне. Эти виды, вероятно, из других регионов и заходят на эти глубины только для кормления. Подавляющее большинство беспозвоночных в этой зоне питаются отложениями, получая энергию из окружающих отложений.

Размер, подвижность и сенсорные способности рыб позволяют им использовать широкую базу добычи, охватывающую несколько зон зональности. Как и у беспозвоночных, рыбные привычки кормления можно разделить на группы. В пелагиали травоядные животные пасутся на перифитоне и макрофитах или собирают фитопланктон из водной толщи. Плотоядные животные включают рыб, питающихся зоопланктоном в толще воды ( зоопланкоядные ), насекомых на поверхности воды, на придонных структурах или в отложениях ( насекомоядные ) и тех, которые питаются другой рыбой ( рыбоядные ). Рыбы, которые потребляют детрит и получают энергию за счет переработки его органического материала, называются детритофагами . Всеядные животные поедают разнообразную добычу, включая растительный, фаунистический и обломочный материал. Наконец, члены гильдии паразитов получают пищу от вида-хозяина, обычно от другой рыбы или крупного позвоночного животного. Таксоны рыб гибки в своих кормовых ролях, меняя свой рацион в зависимости от условий окружающей среды и наличия добычи. Многие виды также претерпевают изменения в диете по мере своего развития. Следовательно, вполне вероятно, что любая рыба занимает несколько гильдий кормления в течение своей жизни.

Лентиочные пищевые сети

Как отмечалось в предыдущих разделах, непроточная биота связана сложной сетью трофических отношений. Можно считать, что эти организмы слабо связаны с конкретными трофическими группами (например, первичные продуценты, травоядные, первичные плотоядные, вторичные плотоядные и т. Д.). Ученые разработали несколько теорий, чтобы понять механизмы, контролирующие численность и разнообразие внутри этих групп. В целом, нисходящие процессы диктуют, что численность таксонов добычи зависит от действий потребителей с более высоких трофических уровней . Обычно эти процессы действуют только между двумя трофическими уровнями, не влияя на другие. Однако в некоторых случаях водные системы испытывают трофический каскад ; например, это может произойти, если первичные производители меньше страдают от выпаса травоядных животных, потому что эти травоядные животные подавляются плотоядными животными. Процессы снизу вверх функционируют, когда изобилие или разнообразие представителей более высоких трофических уровней зависит от наличия или качества ресурсов с более низких уровней. Наконец, комбинированная теория регулирования, восходящая: нисходящая , объединяет прогнозируемое влияние потребителей и доступность ресурсов. Он предсказывает, что трофические уровни, близкие к самым низким трофическим уровням, будут больше всего подвержены влиянию восходящих сил, в то время как нисходящие эффекты должны быть наиболее сильными на верхних уровнях.

Модели сообщества и разнообразие

Богатство местных видов

Биоразнообразие непроточной системы увеличивается с увеличением площади озера или пруда. Это связано с более высокой вероятностью того, что частично наземные виды обнаружат более крупную систему. Кроме того, поскольку более крупные системы обычно имеют большие популяции, вероятность вымирания снижается. Дополнительные факторы, включая температурный режим, pH, доступность питательных веществ, сложность среды обитания, скорость видообразования, конкуренцию и хищничество, были связаны с количеством видов, присутствующих в системах.

Модели сукцессии в планктонных сообществах — модель PEG

Сообщества фитопланктона и зоопланктона в озерных системах претерпевают сезонную смену в зависимости от доступности питательных веществ, хищничества и конкуренции. Sommer et al. описал эти закономерности как часть модели Plankton Ecology Group ( PEG ) с 24 утверждениями, построенными на основе анализа многочисленных систем. Следующее включает подмножество этих утверждений, как объяснили Бренмарк и Ханссон, иллюстрирующие преемственность в рамках одного сезонного цикла:

Зима
1. Повышенная доступность питательных веществ и света приводит к быстрому росту фитопланктона к концу зимы. Доминирующие виды, такие как диатомовые водоросли, имеют небольшие размеры и обладают способностью к быстрому росту. 2. Этот планктон потребляется зоопланктоном, который становится доминирующим таксоном планктона.

Весна
3. Наступает фаза чистой воды , поскольку популяции фитопланктона истощаются из-за увеличения хищничества со стороны растущего числа зоопланктона.

Лето
4. Численность зоопланктона снижается в результате сокращения добычи фитопланктона и увеличения хищничества молоди рыб.
5. С увеличением доступности питательных веществ и уменьшением хищничества со стороны зоопланктона развивается разнообразное сообщество фитопланктона.
6. По мере того как лето продолжается, питательные вещества истощаются в предсказуемом порядке: фосфор, кремнезем , а затем азот . Численность различных видов фитопланктона варьируется в зависимости от их биологической потребности в этих питательных веществах.
7. Мелкий зоопланктон становится доминирующим типом зоопланктона, поскольку он менее уязвим для хищничества рыб.

Осень
8. Хищничество рыб уменьшается из-за более низких температур и увеличения численности зоопланктона всех размеров.

Зима
9. Низкие температуры и ограниченная доступность света приводят к снижению темпов первичной продукции и сокращению популяций фитопланктона. 10. Воспроизводство зоопланктона снижается из-за более низких температур и меньшего количества добычи.

Модель PEG представляет собой идеализированную версию этой модели сукцессии, в то время как природные системы известны своей вариативностью.

Широтные узоры

Существует хорошо задокументированная глобальная закономерность, которая коррелирует уменьшение разнообразия растений и животных с увеличением широты, то есть количество видов уменьшается по мере продвижения к полюсам. Причина этой закономерности — одна из самых больших загадок для экологов сегодня. Теории для его объяснения включают доступность энергии, климатическую изменчивость, беспокойство, конкуренцию и т. Д. Несмотря на этот глобальный градиент разнообразия, эта модель может быть слабой для пресноводных систем по сравнению с глобальными морскими и наземными системами. Это может быть связано с размером, поскольку Хиллебранд и Азовский обнаружили, что более мелкие организмы (простейшие и планктон) не сильно следовали ожидаемой тенденции, в то время как более крупные виды (позвоночные) следовали. Они объяснили это лучшей способностью к распространению более мелкими организмами, что может привести к высокому распространению во всем мире.

Жизненные циклы природных озер

Создание озера

Озера могут образовываться разными способами, но наиболее распространенные кратко обсуждаются ниже. Самые старые и крупнейшие системы являются результатом тектонической деятельности. Например, рифтовые озера в Африке являются результатом сейсмической активности на участке разделения двух тектонических плит. Ледяные озера образуются, когда ледники отступают, оставляя после себя аномалии формы ландшафта, которые затем заполняются водой. Наконец, старицы имеют речное происхождение, в результате чего извилистая излучина реки отделяется от основного русла.

Естественное вымирание

Все озера и пруды получают наносы. Поскольку эти системы на самом деле не расширяются, логично предположить, что они будут становиться все более мелкими по глубине, в конечном итоге превратившись в водно-болотные угодья или наземную растительность. Продолжительность этого процесса должна зависеть от комбинации глубины и скорости осаждения. Мох приводит в пример озеро Танганьика , которое достигает глубины 1500 м и имеет скорость осаждения 0,5 мм / год. Если предположить, что на осаждение не влияют антропогенные факторы, эта система должна исчезнуть примерно через 3 миллиона лет. Неглубокие чечевичные системы также могут заполняться по мере того, как болота вторгаются внутрь с краев. Эти процессы протекают в гораздо более короткие сроки, требуя от сотен до тысяч лет, чтобы завершить процесс вымирания.

Человеческие воздействия

Подкисление

Двуокись серы и оксиды азота естественным образом выделяются из вулканов, органических соединений в почве, водно-болотных угодьях и морских системах, но большинство этих соединений образуются при сжигании угля, нефти, бензина и плавке руд, содержащих серу. Эти вещества растворяются в атмосферной влаге и попадают в непроточные системы в виде кислотных дождей . Озера и пруды, содержащие коренные породы, богатые карбонатами, имеют естественный буфер, что не приводит к изменению pH. Однако системы без этой основной породы очень чувствительны к поступлению кислоты, поскольку они обладают низкой нейтрализующей способностью, что приводит к снижению pH даже при небольшом поступлении кислоты. При pH 5–6 видовое разнообразие и биомасса водорослей значительно уменьшаются, что приводит к увеличению прозрачности воды — характерной особенности закисленных озер. По мере того, как pH продолжает снижаться, вся фауна становится менее разнообразной. Самая значимая особенность — нарушение воспроизводства рыб. Таким образом, популяция в конечном итоге состоит из нескольких старых особей, которые в конечном итоге умирают и оставляют системы без рыб. Кислотные дожди особенно опасны для озер Скандинавии , западной Шотландии , западного Уэльса и северо-востока Соединенных Штатов.

Эвтрофикация

Эвтрофные системы содержат высокую концентрацию фосфора (

30 мкг / л), азота (

1500 мкг / л) или того и другого. Фосфор попадает в непроточные воды со сточными водами очистки сточных вод, с неочищенными сточными водами или со стоками сельскохозяйственных угодий. Азот в основном поступает из сельскохозяйственных удобрений в результате стока или выщелачивания и последующего стока грунтовых вод. Это увеличение количества питательных веществ, необходимых для первичных продуцентов, приводит к резкому увеличению роста фитопланктона, что называется « цветением планктона ». Это цветение снижает прозрачность воды, что приводит к потере подводных растений. Результирующее сокращение структуры среды обитания отрицательно сказывается на видах, которые используют ее для нереста, созревания и общего выживания. Кроме того, большое количество короткоживущего фитопланктона приводит к тому, что огромное количество мертвой биомассы оседает в отложениях. Бактериям требуется большое количество кислорода для разложения этого материала, что снижает концентрацию кислорода в воде. Это особенно заметно в стратифицированных озерах , когда термоклин не позволяет воде, богатой кислородом, с поверхности смешиваться с более низкими уровнями. Низкие или бескислородные условия исключают существование многих таксонов, которые физиологически не переносят эти условия.

Читайте также:  Озера лодейнопольского района ленинградской области

Инвазивные виды

Инвазивные виды попали в проточные системы как в результате целенаправленных событий (например, зарыбление дичи и кормовых видов), так и в результате непреднамеренных событий (например, в балластной воде ). Эти организмы могут влиять на аборигенов через конкуренцию за добычу или среду обитания, хищничество, изменение среды обитания, гибридизацию или внедрение вредных болезней и паразитов. Что касается местных видов, захватчики могут вызывать изменения в размерах и возрастной структуре, распределении, плотности, росте популяции и даже могут привести к исчезновению популяций. Примеры выдающихся захватчиков лентичных систем включают мидию- зебру и морскую миногу в Великих озерах.

Смотрите также

  • иконаЭкологический портал
  • изображениеПортал озер

Источник

Экологические проблемы озер

06 июля 2016 в 09:18

Экологические проблемы озер схожи с теми, которые характерны для внутренних морей. В первую очередь на водоемы негативно влияет хозяйственная и промышленная деятельность людей, поскольку вода озер используется для различных нужд, а спускается в водоемы грязная, практически не очищается. Это приводит не только к загрязнению воды, но и к изменению теплового режима экосистемы. Многие живые существа озер весьма чувствительны к перепадам температур и не могут нормально существовать. Еще возникает проблема мутности воды озер, что также приводит к дискомфорту обитателей озер. В целом любые воздействия негативно сказываются на акватории.

Можно выделить следующие проблемы озер

  • загрязнение;
  • уменьшение количества кислорода в воде;
  • выделение вредных веществ;
  • уменьшение популяций и заболевания животных и рыб водоемов;
  • разрушение берегов;
  • уменьшение количества нерестилищ;
  • изменение режимов озер;
  • возникновение «мертвых зон» в воде.

Загрязнение озер происходит не только из-за стока вод, но и из-за загрязнения близлежащих ландшафтов. Еще ощутимый вред наносит загрязнение атмосферы. Во время выпадения осадков все загрязнители попадают в водоемы, ухудшая состояние экосистем. Также существует очередная экологическая проблема – насыщение водоемов биогенными элементами. Следует отметить, что у каждого озера существует свой ряд проблем.

Самые загрязненные озера планеты

Много водоемов мира имеют высокий уровень загрязненности. Рейтинг самых грязных озер следующий:

  • Озеро Смерти (Италия). На него негативно влияет вулкан Этна и антропогенная деятельность. Вода через чур насыщенна серной кислотой, поэтому ни один микроорганизм не выживает в воде озера;
  • Черная Дыра (Россия). Озеро наполнено промышленными отходами, поэтому его планируют засыпать землей и песком
  • Карачай (Россия). Озеро было загрязнено в результате взрыва на комбинате «Маяк», поэтому воды несут высокий уровень радиоактивных элементов, могут привести к смерти любой организм;
  • Кипящее озеро (Доминиканская республика). Имеет высокую температуру +92 градуса по Цельсию, поэтому любое существо, попавшее в озеро, сварится заживо. Даже когда водоем охлаждается, купаться в нем запрещается;
  • Онондага (США). Находится озеро на грани экологической катастрофы из-за сброса промышленных стоков;
  • Киву (граница Руанды и Демократической Республики Конго). Загрязнено озеро из-за вулкана.

Источник

Озёра и их роль в природе

Озеро — это водоём, возникший естественным путём, заполненный водой в границах озёрной чаши, и не имеющий прямого соединения с морем или океаном. Или, согласно географическому определению, озеро — это естественным образом возникнувшее в земной поверхности замкнутое углубление, заполненное водой.
Озёра не являются частью мирового океана, считаясь чем-то средним между прудами и морями. Озеро Мэрион

Из-за того, что озёра являются замкнутыми водоёмами, в них происходит множество химических реакций. И даже тот факт, что многие озёра пронизаны реками, которые осуществляют обмен воды, существенно ничего не меняет. Течения, конечно, оказывают своё влияние, но они слишком малы, чтобы это было сильно заметно.

Многие элементы, попадающие в озёра, преобразовываются в донные осадки, из-за чего может заметно изменяться рельеф дна. Хотя происходит и обратный процесс. Также рельеф дна изменяет зарастание озёр (преимущественно, водоросли). При условии отсутствия стока воды, всё это может привести к образованию болот. Только понадобятся на это столетия.

Во множестве озёр, не имеющих стока (или имеющих несущественный сток воды), значительно изменяется состав воды. Происходит это из-за испарения влаги. Ведь испаряется, фактически, чистая воды, а различные соли и минералы остаются в водоёмах, благодаря чему значительно увеличивается их концентрация.

Классификация озёр по происхождению

Озёра бывают разными, и даже очень. Так, могут они являться природными, а могут быть созданы искусственно. Большая часть озёр является наземными, но существуют и подземные озёра. Часть озёр имеет сток, и их называют сточными, а вот другая часть не может этим похвастаться — их называют бессточными. В природе могут существовать как пресные озёра, коих большинство, так и минеральные (то есть, солёные). Существует множество критериев, по которым можно классифицировать озёра, но самым популярным из них является способ образования озёр. Так, выделяют 10 различных причин образования природных озёр:

    — Речные. Также их называют старицами. Они образуются в результате образования петли рекой, и последующего отделения этой петли от русла реки. Другими словами, речные озёра — это участок старого речного русла.

— Ледниковые озёра образуются при таянии ледников.

— Тектонические озёра представляют собой трещины в земной поверхности, заполненные водой.

— Горные озёра возникают в горных котловинах.

— Кратерные озёра являют собой заполненные водой кратеры потухших вулканов, а также полости, образованные при извержениях. В том случае, если вулканическая деятельность хоть немного сохраняется, то такие водоёмы могут представлять собой термальные источники.

— Пойменные. Образуются в поймах рек.

— Приморские озёра, как правило, отделены от морей узким участком суши. Бывают эти водоёмы двух типов: лагуны и лиманы. Вода в них, во множестве случаев, представляет собой что-то среднее между пресной и морской водами.

— Моренные озёра. Образованы в результате деятельности ледников.

— Завально-запрудные. Образуются в результаты перекрытия горной реки, что случается из-за обвалов.

  • — Провальные озёра, также называемые карстовыми. Могут время от времени исчезать, а после появляться вновь. Это связано с динамикой подземных вод.
  • Озеро Утренней Славы

    Более наглядной может быть классификация озёр по характеристикам и особенностям. Так, можно выделить группу самых интересных озёр. И включить в неё можно самые большие, глубокие и чистые озёра. В общем, те, которые выделяются среди прочих своими свойствами. Ведь представляют интереснейшие озёра мира большую ценность.

    Также вы можете почитать про самые красивые и самые необычные озёра нашей планеты.

    Значение озёр в жизни человека

    Помимо того, что озёра являются ценными источниками пресной воды, существуют также и другие причины, благодаря которым считаются они очень важными и полезными природными объектами. Так, они издревле служили источниками пищи, поскольку обладают огромным разнообразием рыб и других живых организмов. А также используются в хозяйственных нуждах, например для орошения полей.

    Большие озёра смягчают климат прилегающих территорий. То есть, делают его более стабильным. Происходит это благодаря способности водоёмов сопротивляться значительному изменению температур. Для сравнения, в пустынях температура днём может быть +50 °C, а ночью опуститься до нуля. Озёра не позволяют температуре так резко меняться, а, соответственно, уменьшаются колебания и иных метеорологических показателей.

    Заключение

    Озёра для человека, как и для многих живых существ, жизненно необходимы. По большей части, конечно, из-за огромных запасов пресной воды, которой в мире становится всё меньше и меньше. Озёра нужно ценить и беречь, ведь если допустить их загрязнение, то мы потеряем значительную часть главного природного ресурса. А это сулит большие проблемы. Поэтому, относитесь бережно к природе, ведь это так просто! Стоит лишь приложить капельку усилий, и не только мы, но и наши потомки смогут увидеть красоту окружающего мира, и насладиться ею.

    Источник

    

    Принципы функционирования озер и озерных экосистем

    Виктор Бугаев ПРИНЦИПЫ ФУНКЦИОНИРОВАНИЯ ОЗЕР И ОЗЕРНЫХ ЭКОСИСТЕМ

    1. Некоторые физические процессы, формирующие структуру вод в озерах

    Многие современные методы исследования и моделирования рассматривают озеро как простой «черный ящик» или «хорошо перемешиваемый реактор», где, в процессе исследования, ученые изучают зависимости между биохимическими процессами и физической стратификацией (слоистым строением) в них (Хендерсон–Селлерс, Маркленд, 1990).

    Пресная вода — уникальное вещество. Наибольшую плотность она имеет при 4оС, что предохраняет от промерзания даже относительно неглубокие водоемы, так как более холодная вода и образующийся затем лед имеют меньшую плотность и «плавают» на поверхности. Такая связь плотности и температуры воды обусловлена особенностями ее молекулярного строения. В результате формируется термически стратифицированный водоем как летом, так и (возможно) зимой (обратная стратификация).

    Стратификация озер имеет сезонный цикл. Весной и летом, с повышением температуры воздуха, происходит прогревание озер. При этом поверхностные слои получают больше тепла, чем глубинные. Так как в итоге данного процесса воды поверхностного слоя становятся менее плотными и менее стабильными, возникает стратификация толщи воды. Поскольку весной и летом указанный процесс развивается, глубина прогретого слоя увеличивается; этому способствует конвективное турбулентное перемешивание и молекулярная теплопроводность, ветровое перемешивание и увеличивающиеся температуры воздуха. Образованный таким образом слой называется эпилимнионом, глубина его редко превышает 25 м. В пределах эпилимниона ветровое и конвективное перемешивание распределяет тепло по всей глубине, создавая относительно изотермические условия. По этим причинам эпилимнион часто называют слоем перемешивания (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990) .

    Ниже эпилимниона температура воды быстро снижается, потому что нижние слои получают значительно меньше солнечного тепла и не подвержены ветровому перемешиванию. Эта область резкого снижения температуры, расположенная над гиполимнионом, называется металимнионом (термоклин — приурочен к глубине, на которой отмечаются наибольшие изменения температуры).

    Гиполимнион — включает самые холодные воды и является относительно изотермичным. В этой области температурные изменения в течение всего года минимальны, течения отсутствуют. Термоклин (его толщина обычно 2–5 м) является эффективным барьером для перемешивания вод между эпи– и гиполимнионом из–за резких градиентов температуры. В итоге, озеро в целом представляет собой динамически устойчивую систему.

    Осенью, когда температура воздуха снижается, озеро начинает отдавать тепло в атмосферу. При выхолаживании плотность верхних слоев возрастает, и они перемещаются через эпилимнион до глубины равновесия. Неустойчивость такого типа является причиной возникновения течений, которые в конце концов разрушают термоклин и приводят к изотермическим условиям в озере. Следствием этого «переворота» является чрезмерное помутнение воды, вызванное взмучиванием донных отложений, а также увеличение доступности биогенных веществ в эвфотической зоне (в ней интенсивность фотосинтеза превосходит интенсивность дыхания растений); глубина данной зоны (толщина слоя) в разных типах водоемов имеет свои специфические параметры.

    В некоторых мелких озерах эпилимнион может быть полностью замещен гиполимнионом (или наоборот), так что озеро становится относительно однородным в течение всего года — наблюдается гомотермия. В таких озерах продолжается непрерывное перемешивание, вызываемое конвекцией и турбулентностью, индуцируемой ветровым воздействием, способствует продолжительной замутненности воды (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990).

    После того, как достигается однородный профиль температуры, озеро продолжает охлаждаться и конвективные течения достигают дна. Однородность, таким образом, устанавливается и поддерживается до тех пор, пока не будет достигнута температура максимальной плотности воды (отмеченное явление никогда не происходит в озерах, расположенных в теплых климатических зонах). Если температура вод поверхностного слоя ниже 4оС, то аномальные вариации плотности воды от температуры предопределяет, что эти более холодные воды станут менее плотными, приводя к увеличению стабильности, при которой температурный профиль показывает обратную стратификацию. Воды поверхностного слоя в конце концов замерзнут. Однако вследствие того, что этот более холодный слой расположен на поверхности, нижележащие слои будут иметь температуру около 4оС и не замерзнут. Таким образом озеро приобретает ледяной покров. Он образуется только тогда, когда вода озера, промерзающего до определенной глубины, потеряет достаточно тепла. Лед эффективно защищает водные массы от ветрового перемешивания.

    Весной, когда количество тепла увеличивается, лед тает (если он был, конечно). Поскольку поверхность озера нагревается, вновь возникает неустойчивый профиль температуры, однако последующие весенние конвективные движения проникают на меньшую по сравнению с осенью глубину. Спустя некоторое время, в период, примерно соответствующий весеннему равноденствию, водные массы вновь становятся однородными по температуре. Этому моменту соответствует последний этап полного годового цикла стратификации (Чеботарев, 1955; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990).
    Озера, где наблюдаются осенние и весенние конвективные перемешивания вод называются димиктичными. Озера, где отмечается только весеннее перемешивание вод и температура воды никогда не превышает 4оС, называют холодными мономиктичными (в теплых климатических зонах, где вода всегда превышает 4оС — озера являются теплыми мономиктичными).

    Читайте также:  Телецкое озеро алтай карта дорог

    Перемешивание вод в озерах является, таким образом, функцией (следствием) места их расположения. В тропической и экваториальной областях, где поступление солнечного тепла почти не изменяется в течение года, гиполимнион редко намного холоднее эпилимниона; поэтому даже небольшое выхолаживание вызывает конвективные движения воды из–за слабовыраженного термоклина. Такие озера называют полимиктичными (перемешивание вод здесь часто является результатом сильных ветров и небольших сезонных изменений температуры воздуха). Есть и другие типы озер (Хендерсон–Селлерс, Маркленд, 1990), которые не приводим и не рассматриваем.

    2. Основные источники поступления биогенов в озера

    Пресные озера (водохранилища) содержат 0,009% мировых запасов воды и 1,4% запасов пресной воды. В последние столетия, пресноводные озера и водохранилища деградируют и исчезают со все более увеличивающейся скоростью. Деятельность человека и его пассивность — главные причины быстрой деградации водоемов. Начиная с 1960–х годов взгляды человека на отношение к окружающей природной среде постепенно меняются. Сейчас уже признается всеми, что природные ресурсы истощаемы и их необходимо оберегать от чрезмерной эксплуатации.

    Все озера по их состоянию воды, флоры и фауны подразделяются на несколько групп: олиготрофные, мезотрофные, эвтрофные и другие (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999). Но следует иметь ввиду, что эта классификация является одновременно и субъективной и относительной, поскольку категория «трофность» включает локальные требования и отражает различие озер в относительно небольших регионах (Хендерсон–Селлерс, Маркленд, 1990).

    Главная проблема озер — эвтрофирование. Это повышение уровня первичной продукции за счет увеличения поступления биогенных веществ, главным образом азота и фосфора. Переход водоемов от олиготрофного состояния через мезотрофное в эвтрофное связан с накоплением в них донных отложений и уменьшением водной толщи, в которой при прежней скорости поступления биогенов увеличивается их концентрация. Различают естественное (длится тысячелетиями и, даже, геологическими периодами) и антропогенное эвтрофирование, которое может происходить очень быстро, особенно в водоемах с замедленным стоком.

    По существу, эвтрофирование — это термин, означающий старение озера. «Молодое» озеро — олиготрофное, содержит небольшое количество биогенных веществ, которое способно поддерживать только низкий уровень биомассы. Природные процессы, такие, как ветровая эрозия или вымывание дождевыми водами, обеспечивают вынос биогенных веществ в водную среду, что поддерживает развитие растений и животных.

    Поступление биогенных веществ в водоем всегда превышает их потери из него, что приводит к «чистому» накоплению этих веществ в водоеме. В нем начинается образование осадков, обычно со средней скоростью 0,2–2,0 мм/год и более. По мере развития осадконакопления глубина озера уменьшается и корневая (литоральная) растительность начинает вторгаться на ранее открытые участки водной поверхности. Озеро проходит через среднюю стадию — становится мезотрофным и в конце концов становится «старым» водоемом, который называют эвтрофным. В геологическом смысле подобное озеро вскоре исчезнет.
    В проточных (реках, ручьях) и слабопроточных водоемах с замедленным стоком (озера, водохранилища, пруды, внутренние моря) скорость поступления биогенных веществ может превышать скорость их разложения в результате дополнительного антропогенного поступления, приводя к эвтрофированию и увеличению биомассы.

    Большая часть биогенных веществ поступает в озеро с поверхностным и подземными стоками (реки, ручьи, ключи и т. д.), а остальная часть — непосредственно с осадками и выпадением различных частиц из атмосферы. Поэтому важно понять взаимодействие между водой и биогенными веществами на водосборных территориях. Доступность биогенных веществ в озерах и их потребление регулируется некоторыми гидрологическими процессами, а также биологическими факторами (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    В экосистеме, лимитированной по фосфору, снижение его концентрации приводит к ограничению роста растений и водорослей. В таких условиях процесс эвтрофикации замедляется и даже становится обратимым.

    Системы, лимитированные по азоту, часто представляют собой более серьезную проблему в сравнении с водоемами, лимитируемыми по фосфору, поскольку источники этого биогенного элемента труднее контролировать.
    Присутствие в воде озер кремния вызывает особый интерес, так как он необходим для развития диатомовых водорослей, популяция которых достигает, как правило, максимума весной. Когда количество кремния истощается, наступает быстрое снижение или «гибель» популяции диатомовых. Диоксид кремния существенен для построения панцырей диатомовых водорослей. Летом после отмирания диатомовых кремний медленно переходит обратно в воду, хотя определенная его часть захороняется в донных илах.

    Окислительно–восстановительный цикл железа является важнейшим компонентом биохимии озер, так как он связан с окислительно–восстановительным потенциалом (редокс–потенциалом) и рН водной среды.
    Марганец — это очень важный биогенный элемент, однако редкий, даже если он и является лимитирующим. Работы по изучению форм нахождения марганца идентифицируют два основных источника его поступления: с водами притоков в озера и выделением из донных отложений.

    Донные отложения в водоемах формируются из двух основных источников: 1 — внос аллохтонного вещества (внешнего по отношению к озерной системе) обеспечивает поступление в водоем неорганических частиц и некоторых органических веществ (дождливая погода увеличивает перенос наносов и эрозию); 2 — «дождь» отмершего органического вещества из водных масс озера (это второй по значению вклад в донные отложения).

    В озерах имеет место постоянный обмен биогенными веществами между донными отложениями и прилегающей к ним водой, который в своей основе является диффузным процессом. Этот процесс может быть усилен или дополнен другими факторами (Хендерсон–Селлерс, Маркленд, 1990): турбулентностью (физические нарушения и вымывание донных отложений), биотурбулентностью (вызывается биологическими силами — воздействием роющих организмов, червей, рыб, птиц и др.), биотическим удалением (рост растений из донных отложений), уплотнением (биогенные вещества выдавливаются через поры с водой), окислительно–восстановительным потенциалом (например, обогащенные железом отложения, имеют свойство адсорбировать фосфор в аэробных и выделять его в анаэробных условиях) и биологическим окислением (разложение органического вещества бактериями, которые трансформируют биогенные вещества в неорганическую биологически доступную форму).

    3. Функционирование экосистемы озера, расположенного в умеренном поясе

    Физическая среда, или биотоп вместе с населяющими его видами, составляющими биоценоз, образует экосистему (биогеоценоз). Водные системы (реки, озера, моря и т. д.) — представляют собой хорошие примеры экосистем, т. к. они имеют совершенно четкие границы и населены водными обитателями, не способными жить на соседней суше. Водные системы очень удобны для изучения и потому, что между ними и сушей, как правило, наблюдается слабый обмен (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Зенин, Белоусова, 1988; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Прежде, чем перейти к изложению материалов о нагульно–нерестовых водоемах тихоокеанских лососей, рассмотрим пример экосистемы — озера, расположенного в умеренном поясе (Дрё, 1976), к каковым относится большинство озер в рассматриваемых нами регионах.

    В состав флоры озерных систем входят ряд водных растений, относящихся к разным группам цветковых, одни из которых растут на берегу, другие — в воде. Но основная часть растительной массы в озерах преставлена микроскопическими водорослями — диатомовыми (Bacilariophyta), синезелеными (Cyanophyta), зелеными (Chlorophyta), золотистыми (Chrysophyta), динофитовыми (Dinophyta) и др. Все эти растения благодаря энергии солнечного света, легко проникающего на определенную глубину (в разных озерах — она может различаться), поглощают минеральные соли и углекислый газ, растворенные в воде, и синтезируют из них собственное вещество, растут и размножаются.

    Все растения: травы и крупные водоросли прибрежной зоны, а также микроскопические водоросли, парящие в толще воды — фитопланктон, и растущие на освещенных участках дна — микрофитобентос, в совокупности, называются первичными продуцентами. Ими производится подавляющая часть органического вещества в водоемах. Только растения, из всего содержащегося или обитающего в водных системах, создают органическое вещество за счет неорганического при участии солнечной энергии. В целом масса взвешенных в воде микроскопических водорослей приблизительно соответствует общей концентрации растворенных в воде солей, достигающей максимума весной и осенью (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Биогенные вещества — это компоненты, которые первичные продуценты утилизируют для жизнедеятельности и размножения. Рост водорослей основан на потреблении, по крайней мере, 19 биогенных элементов, хотя большая их часть требуется в следовых количествах.

    В дополнение к трем основным жизненно важным компонентам (углерод, водород и кислород) первичным продуцентам требуются и другие биогенные вещества в сравнительно больших количествах. Среди них макроэлементы (натрий, кальций, фосфор, магний, кремний, азот, фосфор и сера).

    Остальные элементы требуются в меньших количествах и называются микроэлементами (медь, железо, цинк, хлор, бор, молибден, кобальт, ванадий, марганец). Недостаток любого из этих элементов лимитирует развитие первичных продуцентов. В большей части водных систем такими лимитирующими биогенными элементами является — фосфор; либо, в меньшей степени, — азот (Одум, 1975; Дрё, 1976; Риклефс, 1979; Биологический словарь, 1986; Хендерсон–Селлерс, Маркленд, 1990; Христофорова, 1999).

    Фитопланктоном питаются очень многие животные, чаще всего мелкие, неспособные к большим и быстрым передвижениям. Они, также как и организмы фитопланктона, не способны противостоять переносу течениями. В совокупности, мелкие животные в озерах — образуют зоопланктон. Это в основном веслоногие (Copepoda) и ветвистоусые (Cladocera) рачки, первичнополостные черви — коловратки (Rotatoria); сюда же входят мелкие личинки ряда видов насекомых, например комаров.

    Следует заметить, что отдельные виды рыб также используют в питании фитопланктон. Животные, питающиеся фитопланктоном, — это первичные консументы т. к. они используют уже готовое органическое вещество, ограничиваясь его преобразованием; но создать заново органическое вещество они не способны.

    Самые мелкие из первичных консументов (Copepoda, Cladocera и Rotatoria и др.), появляются в огромных количествах обычно тогда, когда много пищи; следовательно в своем развитии они вцело следуют за развитием фитопланктона. Напротив рыбы, питающиеся фитопланктоном, но обладающие значительной продолжительностью жизни, способны подолгу голодать или менять объекты питания.Зоопланктон, в свою очередь, служит пищей более крупным животным (личинки насекомых, многие виды рыб, некоторые виды птиц). Всех таких плотоядных животных, т. е. питающихся другими животными, называют вторичными консументами. Отсюда видно, что живые существа, относящиеся к различным систематическим группам, могут играть в экосистемах одинаковую роль — все они принадлежат к одному пищевому, или, как чаще говорят, трофическому уровню. Трофические уровни связаны между собой зависимостями, складывающихся из элементарных связей в виде цепочки — все они вместе образуют так называемую пищевую цепь, звенья которой зависят друг от друга: исчезновение фитопланктона приводит к исчезновению зоопланктона, а значит и вторичных консументов (рисунок).

    Описанная выше пищевая цепь играет в озерах доминирующую роль. Но помимо нее, в озерах существует немало других пищевых цепей. Например, на прибрежных растениях, наполовину находящихся под водой, на их надводных частях живут насекомые–фитофаги, питающиеся листьями. За счет этих насекомых, в свою очередь, кормятся птицы. Подводные части растений обгладывают водные насекомые и их личинки (например, жуки–водолюбы), а также брюхоногие моллюски типа прудовиков и катушек.

    Растительная пища далеко не полно переваривается первичными консументами. В экскрементах последних содержится еще много растительных органических веществ, особенно легко усвояемых благодаря тому, что они размельчены в пищеварительном канале. Ими питается большое число видов, среди которых в основном преобладают равноногие ракообразные (называемые в обиходе червями). Пройдя через их пищеварительный канал, остатки органической пищи становятся добычей бактерий, которые окончательно разлагают их до минеральных солей и углекислого газа, вновь используемых растениями. Отсюда видно, что в природе существуют также пищевые цепи деструкторов, которые полностью разлагают органическое вещество.

    Понятие пищевой цепи удобно для изложения, оно соответствует в отдельных случаях и реально наблюдаемым явлениям, но в целом носит несколько упрощенный характер. Точнее было бы говорить об очень сложной трофической сети, объединяющей все виды, обитающие в озерах, и охватывающие все совершающиеся в них обменные процессы.

    Таким образом, непрерывный поток материи и энергии постоянно пронизывает экосистему. Если экосистема стабильна, то ее можно сравнить с большой трубой, в один конец которой поступают минеральные соли и солнечная энергия, а из другого выходит живое вещество. Последнее может быть использовано внешними хищниками, например человеком, который, вылавливая из озера рыбу и поедая ее, составляет последнее звено пищевой сети. Человек в данном случае играет роль третичного или четвертичного консумента, но не будем упускать из вида, что собирая кресс–салат на берегах озера по примеру многих других организмов, он может быть и первичным консументом (Дрё, 1976).

    В нерковых озерах основным источником «нового» органического вещества является фитопланктон.

    Бугаев В.Ф., Кириченко В.Е. 2008. Нагульно-нерестовые озера азиатской нерки (включая некоторые другие водоемы ареала) // Петропавловск-Камчатский: Изд-во «Камчатпресс». — 280 с.

    На фото: колониальная водоросль — Cфероносток сливовидный Sphaeronostoc priniforme. На Камчатке известен из оз. Налычевского и мелководных озер в бассейне р. Правый Кихчик (фото Д. Гимельбранта)

    Источник

    Adblock
    detector